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The relaxation of a relativistic electron beam is studied in one space dimension by two 
different codes: (a) by a hybrid code where the fluid equations for the background plasma 
are integrated according to the pseudospectral method, and the beam particle equations 
by the particle-in-cell method; (b) by a pure particle-in-cell code. Thermal energy remains 
small in both simulations, which indicates that the fluid description is adequate to study 
the interaction. Beyond that, a quantitative comparison of the results shows good agree- 
ment; code (a) is more accurate due to the lower noise level, but it is also more sensitive 
to numerical instabilities. Finally, we show that simpler models like the single-wave model 
and its derivatives are in conflict with the correct wave-particle dynamics. 

1. INTRODUCTION 

The numerical study of plasma behavior has proceeded mainly along two lines 
which look physically and technically rather dissimilar: The plasma is treated either 
as a fluid or as an assembly of particles of finite size. While both ways of viewing the 
physical situation lead to well-known advantages and shortcomings of the 
corresponding numerical codes, relatively little is known of the feasibility and accuracy 
of a combination of both methods. Fluid equations may well be integrated by a 
particle-in-cell (PIC) technique (Harlow [I], Marder [2], Morse er al. [3], Leboeuf 
et al. [4]), but here we are thinking of a hybrid code: the combination of an ordinary 
fluid code, to be used for nonresonant particles, with an ordinary PIC code (Morse [5]) 
for resonant particles. A similar code operating on a long time scale has already been 
used by Rathmann et al. [6], but the specific advantages and shortcomings of a 
hybrid code do not seem to have been explored systematically in comparison with an 
ordinary particle code. Basic questions refer to the parameter range where the fluid 
code operates in a numerically stable regime, and also to the accuracy and economy 
of a hybrid code, in comparison with a pure particle code. It is true that the distinction 
between resonant and nonresonant particles may become artificial during the course 
of time for particular runs, but the use of few “representative” particles in a fluid with 

71 
OOZI-9991/80/070071-22$02.00/O 

Copyright 0 1980 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



72 ELSkSSER AND MAASJOST 

a low noise level is generally attractive as long as the plasma state can be reproduced 
this way. 

We calculate the linear phase and the saturation of the relativistic two-stream 
instability in one space dimension with immobile ions. Code (a) integrates the fluid 
equations for the background electrons in an Eulerian manner (pseudospectral 
method) which can easily be used also in two and three space dimensions, while the 
beam electrons are treated individually according to the PIC technique. Code (b) 
integrates the equations of motion of all electrons individually according to the PIC 
method; it gives results similar to those obtained by Thode and Sudan [7] with a 
different numerical scheme. 

In the next section we formulate the problem in more detail; Section 3 describes 
the numerical procedures; and Sections 4, 5, and 6 show the numerical results for the 
initial, linear, and saturated phases, respectively. Section 7 is devoted to the question 
of how the stability of the hybrid code can be improved, and how much time is saved 
or lost in comparable runs. 

2. FORMULATION OF THE PROBLEM 

In case (a) we consider an electron fluid with mass density p and with the x-com- 
ponent of the velocity field 

where whom is the spatial average of a, over a periodicity interval of length L; and y is 
the velocity potential. A relativistic electron beam moving in the x-direction excites an 
electric field 

r  

E = Ehom - d? @ 
ax ’ 

where “horn” again means the spatial average, and @ is the electric potential. Here 
the question arises whether the transverse modes play an essential role in more realistic 
two- or three-dimensional runs. At the present time this problem can only be discussed 
within the linear theory: for a beam propagating in an unmagnetized plasma, the 
growth rate of transverse modes is reduced both by small transverse velocities of beam 
particles and by increasing the temperature of the background plasma. The case of a 
beam propagating through a magnetized plasma along the magnetic field fi is more 
subtle, but the growth rates have been computed by Godfrey et al. [8] with the follow- 
ing results: analytic expressions for the maximum growth rates of electrostatic modes 
in the “weak beam case” are in good agreement with those obtained from numerical 
solutions of the full electromagnetic dispersion relation, with the main exception that 
the numerical maximumgrowth rate of thetwo-stream instability for large3 (oJ,, > mDe) 
drops off still faster with increasing angle between the wave vector and B than the 
analytical rate. Therefore, even the one-dimensional treatment seems to be adequate 
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in this case. Generally, we should use the following fluid equation for the velocity 
field of the background electrons: 

‘v + (a. v)a + VP = -; (B + f x B), 

where the quantity 

is evaluated with adiabatic index 3. Equivalently we may write 

-+ 
~+$_~homfV $+jL;@)=-;&‘+&j 

m ( 
(1) 

where .@r is the transverse part of the electric field, and b is the total vorticity: 

For electrostatic perturbations, we have & = 0, B = 0, and the generalized 
Helmholtz equation: 

d=Vx(t;xQ 

with the trivial solution 6 = 0 ( corresponding to a rotation of the equilibrium plasma 
if 3 # 0). The velocity field is then given according to the Clebsch representation [9] 
as 

6 = Pm - vg, + xV$ 

with the time-independent vorticity 

v x v’ = (Ox) x (V#) = +-&ii. 

Equation (1) is then used to obtain the following two scalar equations: 

Pb) 
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In the one-dimensional case we can put x = I/ = 0 without loss of generality and 
start immediately with Eq. (2a) and with Bernoulli’s equation, Eq. (2b). The remaining 
set of equations then reads as follows: 

c, = -:E, 
m 

[Pll%lhom~, 

[P + Pblhom), 

(3) 

(4) 

(5) 

(6) 

(7) 

with 

yu = (1 - lp2/C2)-li*, 

/~=1,2 NB. ,“., 

Equation (3) expresses the mass conservation of the background electrons; Eq. (4) is 
the spatial average of Ampere’s law; and p b , vb refer to the beam quantities which are 
obtained in an obvious manner from the (x, , 21,) variables of each beam particle. 
Equations (5) and (6) are the relativistic equations of motion for the beam electrons. 
Finally, we have to solve Poisson’s equation, (7), for every time step. At t = 0 we 
assume that the total current proportional to the right-hand side of Eq. (4) is zero, but 
for t > 0 this will not remain true. Therefore, we included the homogeneous variables 
Ehom, vhom. The initial strength of the beam can be measured by the parameter S of 
Thode and Sudan [7]: 

s = (1: /c)” y (phom/2ph”“)“” b b b 03) 

with 

yb = (1 - 2’b2/c2)--1;*. 

The beam energy is expected to be transformed partially into various other energies: 
electrostatic field energy, kinetic energy of background electrons, and thermal energy; 
but the total energy H should be invariant: 

H= dx 
f 1 

1 dp’ P(p’)\ + t rwy,c2: 
u-1 
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the summation is over all beam particles. This will serve as a test for the numerical 
integration. Code (b) integrated only the particle equations (5) and (6) for both 
background and beam electrons simultaneously with (7). 

The energy invariant now reads 

where N is equal to the total number of beam and background electrons. 

3. NUMERICAL PROCEDURES 

The system of Eqs. (2)-(7) has been integrated in dimensionless form by code (a); 
the corresponding figures in the following sections are also labeled by (a). The time 
integration has been done by a central explicit difference scheme of second order 
(leap frog). This is usual and well adapted for the PIG method [5], which has been 
used for treating the dynamics of the beam electrons and their contribution to the 
electric field (Eqs. (5), (6) and (7)). All x, are computed and used at integer time 
steps, all v, in between. But this leads to a difficulty in Eq. (4) where the mean beam 
velocity vb is required at integer time steps; therefore, some interpolations or extra- 
polations are inevitable. The following closed system has been used for discretization 
in time: 

u, (t + q, = u, (t - qj + At (- $-) E(r), 
(4 

.u,(r + At) = x,(t) + At v, (I+$,; 

P(f + At) = PO - At) + 2dt (- &j [p](t), 
(8) 

v(r + At) = v(r - At) + 2At 
[ 
- $5 + ; u2 + P] (t); 

Ehom(t+$) = ( ‘l) Ehom t - 2 + At $ ; {[p]h”“(r) + [,+,q,]h”“(t)}, 

(Y) 
uhom(t + At) = @m(t) + Ar (- +I Pm (t $ -$I. 

Assuming that all quantities are known at time t or t - At/2, respectively, we find 
the new particle coordinates according to (LX) by converting v,(t - At/2) into u,(t - 
At/2) and reconverting ~,(t + At/2) into v,(t + At/2). The fluid quantities p and 9) are 
assumed to be known simultaneously at t and I - At; then we can advance them 
repeatedly according to (p). The homogeneous quantities are determined from (y). 
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The value of vb in a given cell of the x-space grid is obtained by computing the center- 
of-mass velocity of all particles contributing to the density in this cell. The mass 
assigned to a particle is determined by area weighting, and its velocity is taken to be 
the mean value of v, (t + dt/2) and v,(t - AI/~). 

Finally, we have to mention that (a) requires the extrapolation of the homogeneous 
part of E from t - At/2 to t which has also been done linearly. The discretization in 
x has been replaced by truncating the Fourier series of p and y, respectively; (/I) and 
Poisson’s equation have been solved in Fourier space. The convolution sums arising 
from the nonlinear terms have been evaluated in the fastest manner by transforming 
the factors into x-space and retransforming the product into Fourier space without 
removing the aliasing interactions. This pseudospectral method has been found to be 
less accurate for wave propagation problems than the spectral method @charnel and 
ElsHsser [lo]), but in the present problem the accuracy was sufficient for the com- 
parison between results (a) and (b). The starting values of p and F in case (a) were 
obtained by simulating the thermal noise in Fourier space at t = 0 with a Monte 
Carlo method, and by distributing the beam particles uniformly in x-space with equal 
velocity 01, (cold beam). The second values of p and ~JJ which are needed to start @) 
were obtained with Euler’s method. The general procedure for (a) is shown in the 
flow diagram. 

Code (b) integrated only the particle Eqs (5) and (6) for both background and beam 
electrons simultaneously with (7) according to PIC; the initial distribution of back- 
ground electrons was spatially homogeneous and Maxwellian in velocity space; its 
mean velocity vhom has been chosen as in case (a) to cancel the initial beam current. 

4. INITIAL PHASE 

The following initial parameters have been chosen (vthe = (~T~/n&,)l/~ = thermal 
speed of background electrons; A, = Debye length = v&w,,): 

t&/C = 0.9; V&y/C = 0.1. 

Number of cells in k- or x-space: 128. 

Maximum wave number (= n/Ox): A;;‘. 

&Jmlphom in case (a): 0.05. 

Number of beam electrons: 256 for (a), 
768 for (b). 

Number of background electrons for (b): 

Time step At in units of w;:: 

15,616. 

0.05 for (a), 
0.5 for (b). 

The resulting beam strength parameter (Eq. (8)) is S = 0.4 in both cases. 
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After some time steps, we observed the following mean values (in space and time) 
of the turbulence parameter: 

(E”) 
87rn,uT, 

= 7.8 x lO-‘j for (a), 

= 2.3 x 1O-3 for (b). 

In (a) we have chosen small initial Fourier amplitudes, thus producing a low noise 
level. Its order of magnitude corresponds to the thermal noise of real plasmas. The 
higher value, according to (b), is in rough agreement with the formula for the thermal 
noise of a 1 - d plasma with the parameters of code (b), namely: 

1 1 
_- =4 x 10-3. 
2~ n,XD 

The observed lower value in case (b) is probably due to the finite size of the particles: 
for particles of length a with homogeneous charge density, one obtains the following 
shape factor for the charge density (Birdsall et al. [l 11): 

S(k) = sin(/cu)/(ka). (10) 

The Fourier transform of the density of point particles has to be multiplied by the 
square of this expression, leading thus to a decreasing electric field at high wave 
numbers k. 

5. LINEAR PHASE 

The wave number of the most unstable mode is given according to the linear 
theory by 

with 

k, = ~mlvb - (W-Wol 

[k,] = 7. 

We have calculated the growth rates for this and the two neighborjng modes 6 and 8 
from the dispersion relations 
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where S(k) is the shape factor given by Eq. (10). Equations (12a) and (12b) are the 
approximate dispersion relations for the runs (a) and (b), respectively, when the 
temperature of the background electrons can be neglected. Equation (12~) is the 
corresponding relation for the case of point particles. The results for these “theore- 
tical” growth rates are displayed in Table 1. The effect of the shape factor is obviously 
more pronounced in case (b) than in (a). The observed growth rates in Table 1 are 
obtained from Fig. la and b, where the logarithm of the squared modulus of the 
electric field amplitude for the three modes is plotted as function of time. Both 
figures clearly show a linear phase; the corresponding slopes give twice the experimen- 

TABLE I 

Comparison of Growth Rates for the Three Most Unstable Modes 

[kl & 

6 0.094 
7 0.109 
8 0.125 

(a) @I (c) 

Theor. Exp. Theor. Exp. Eq. (12~) 
___-. ~... ~ ~~~~~ 

0.091 0.088 0.091 0.073 0.091 

0.103 0.103 0.101 0.101 0.104 

0.075 0.082 0.057 0.08 I 0.076 

a b 

FIG. 1. Wave energy 1 EK 12:18r(p + p&T,/m for the three most unstable modes as a function 
of time. 
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tal growth rates of Table I in units of mge . The general agreement between theoretical 
and experimental growth rates is satisfactory. Deviations are due to the finite cell 
size whose effect on the dispersion relation is not included in the PIC theory. In code 
(a), we have computed the evolution of Fourier modes, thus doing numerically what 
is done analytically in linear theory. Differences arise from the finite time step and the 
PIC technique used for the beam. Because its density is small, the results in code (a) 
are in better agreement with theory than those in (b), where PIC has been used for 
beam and plasma. The different noise level is responsible for the different time inter- 
vals where the linear phase can be observed. The times for (a) and (b) physically 
corresponding with each other can be obtained by comparing figures which show the 
same stage of the evolution, e.g., we can compare the phase space plots of the beam 
particles in Figs. 2a (wvet = 80) and 2b ( WJ = 50) where the most unstable mode 
has reached a comparable fraction of its saturation level. We find essentially the same 
distribution functions up to a phase shift in X. The density contrast is better in Fig. 2b, 
since the number of beam particles in (b) is three times higher than in (a) (though the 
relative numbers are equal). The distribution of beam particles retraces the electric 
field in this phase. It is not sinusoidal due to the presence of the modes with k slightly 
different from k, , and due to a modulation with the basic wave number 27r/L. 

. : : . 

. . 

. :: . . 

. . 
. . 

. . 

2b 

2: 

:::: :::::: 

. ::::: :::: :: 

:: :. ?! . :: 
:: i: :: .:: :: 
i. ,. :: 9: : : 

::: . T: :: 
$> :: ..,... 

:.: 

:::. ?I. : 

i:: 

: :: :::. : :. :. : :: . 
:. I. :: . :. : .:. : :: :: . ?: 

2a 

:: :.: . . : : _ . 
. . . . . I:. t.. . . I : : : . . . . . . . . . . . .- * . . r . . . . . . . . I . . . - . . . . 

. . I. I . . 1 . . 1.:. : : 
: :. . :: 

:.: 
. t:. 
:. : 9: 

:.:: : 
: :: : . 
: . . . 
: . 

: . 

::: 
:. r: 
: .: 

:. 
: ,: 
i: :. 
:. :: 

111:x: 
t: 

FIG. 2. Distribution of beam particles in phase space at wpet = 80 (a) and WJ = 50 (b). V and 
x are increasing from the top to the bottom and from the left to the right, respectively. 
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6. SATURATED PHASE 

The linear phase is terminated if the beam particles become slow enough to be 
trapped in the moving potential waves. Shortly before trapping these particles are 
localized in x-space, and the higher harmonics of the most unstable modes are 
generated. Figures 3a and b depict the electric field energy density as a function of the 
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FIG. 3. Wave energy 1 EK le/8n(p + p&cT,,‘m as a function of wavenumber shortly before 

saturation. 

wave number; in case (a) the generation of higher harmonics is more pronounced due 
to the lower noise level. In both cases the trapping could clearly be seen by inspection 
of the whirls in the phase space plots of the beam particles; after the saturation time 
t, , where the field energy reaches a first maximum, 

W = c 1 Ek /2/8m,,ybon~,c2 = 0.074 for (4, 
k 

== 0.072 for (b), 
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we observe a quasi-periodic energy exchange between the beam and background 
particles. Figures 4a and b show the time evolution of several energies listed in Eq. (9): 
beam energy (curve l), total background energy (curve 2), and electric field energy 
(curve 3) in different units. The drop of the field energy from the first maximum at 

wpvtp = 96 for (a), 
= 66 for (b), (14) 

to a minimum is more pronounced in (a) because the bunching of the beam particles 
in x-space is more effective in the fluid code. We find 

minimum of field energy = 15yi of maximum for (a), 
= 40% of maximum for (b). 

FIG. 4. Beam energy (l), plasma energy (2), and field energy (3) as functions of time (arbitrary 
units; curves labeled identically also have identical scales). 
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It is interesting to compare, also, the thermal part of the background energies 
because the adiabatic law in case (a) is, in general, physically different from an 
empirical law, which would match the results in case (b). We have calculated the 
mean velocity of the background particles in case (b) and subtracted the corresponding 
ordered kinetic energy from the total background energy; the remaining energy called 
thermal energy has been compared at the end of the run with the corresponding 
quantity at t = 0. We find 

Increase of total background energy per particle, AT,, = 1.07 x 10~%z,c2 for (a) 
= 0.92 x 1O-2 m,c2 for (b). 

Increase of thermal energy per particle: = 5.4 % of A&, for (a), 
= 10.2 T/, of A&, for (b). 

f&d a 

f&d b 

FIG. 5. Homogeneous beam distribution function at saturation. The step size for fa is one 
particle per velocity interval in both cases, normalized to equal numbers of beam particles. 
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Therefore, the adiabatic law is not really consistent with the PIC simulation, but in 
both cases the thermal energy is only a small fraction of the total background energy 
and the difference can be ignored. The variation of the total energy H, according to 
Eq. (9), has also been measured: 

AH = 0.10% of Hfor (a), 

= 0.14% of H for (b), 

which is still an order of magnitude smaller than the increase of the thermal back- 
ground energy. 

f&l b 

:uu-dhmL 3 4 1 , -- ! _ 7 8 9 10 . 
Vi'"', ?_1 

FIG. 6. Same as Fig. 5, but at the fist minimum of the field energy. 
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The spatially averaged beam particle distribution functionfB(a) has been observed 
at the times t, , tmin of maximum and minimum field energy, respectively. At t = t, 
we find a high-energy part around v M 0.96~ = 9.60~~~ and a relatively flat part for 
ZJ 5 0.9~ in Figs. 5a and b. Figures 5a and b have been normalized to equal beam 
particle numbers. Later on, the beam particles are accelerated by the waves, and we 
expect higher energies at t = tmin . This is confirmed by Figs. 6a and b, where a group 
of particles has been moved from the flat part of the distribution function to higher 
velocities. We define a number NH of high-energy particles 

and find the following results: 

NH lf=t,s = 28.5 Tc, of NB for (a), 

= 28.8 “,) of NB for (b). 

NH ) f+,,in = 48.8 ’ ,, of NB for (a), 

== 37.6 O1k of NB for (b). 

Up to t = t, we see rather similar distribution functions, but for t = tmin the dif- 
ferences are more pronounced. The PIC code produces a smearing out of the particle 
phases at this time as compared with code (a). The same phenomenon could also be 
supposed when comparing the minima of background and field energies in Figs. 4a 
and b. 

7. STABILIZING PROCEDURES AND COMPETITIVE RUNS 

An ideal code would combine the numerical stability of the PIC code, allowing 
large time steps, with the economy (per time step) and numerical accuracy of the 
fluid code. Of course, we have not achieved this goal, but some steps have been made 
in this direction. Here we present the results of several runs both for (a) and (b), where 
some time-saving and/or stabilizing procedures have been applied. 

The time step in an explicit scheme is usually limited by the requirement of numerical 
stability of the modes with highest frequency urnax. Using the linear fluid part of the 
equations of motion (/I) and the fluid part of Poisson’s equation (7) as a guide, we 
obtain the usual dispersion relation for Langmuir waves: 

with the cut-off 

km& = & . 64.x,, = 1 
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and, therefore, 

a rather high value where Landau damping should be included. But the trapping 
phase has also been found to be critical for stability, requiring w,,df Q wpe/wmax = 
0.5 and leading us to the extremely small value of uDe dt = 0.05. The situation gets 
still worse for a run with dx w AD, k,a,h, a n-, Wmax = 50,~ . 

Therefore, we explored two methods to improve the stability of the fluid code. 
The first method is a semi-implicit time discretization scheme of second-order 

accuracy for the equations (/I) of the form 

-L bt+At 2At - ut--dtl = ; L . [ut+~t + ut--dtl + Nut , u,), (15) 

where the elements of the vector ut are the unknown functions p, 9) at time t: 

P(C -4 
ut = rp(t, x) ’ i ) 

and the matrix L comprises the linear operators of the right-hand side of@) acting 
on p, v; the vector N(ut , II,) represents the remaining terms. 

In Fourier space, we have 

-pok2 
L = iw,‘?l);,,k’, 0 1 ’ 

where ~3 has been eliminated by the Poisson equation (7); N (ul , UJ is a collection of 
convolution sums and also includes the potential of the beam particles. Solving 
Eq. (15) for the unknown vector z++~$ , we obtain the following scheme in Fourier 
space: 

U - A * Ut-At + B * N&t , Ut) t+At - (16) 

with 

B = 2At(l - At L)--I 

= w2& cl+ At L), 

A=l+B.L 

I - (w, At)” 2At 
= C&o,; At)2 ’ + 1 + (WI; At)2L’ 

where 1 is the unit matrix. A fully implicit scheme would be unconditionally stable, as 
is well known for ordinary differential equations (see, e.g., Potter [12]). The stability 
properties of scheme (16) wil1, therefore, depend only on the nonlinear and the beam 
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terms (as comprised in N(u, , uJ) for which no simple implicit method seems to be 
available. Indeed, for N(ut , ut) = 0 we can easily show that Eq. (16) produces the 
following solution for the Fourier modes: 

ut - exp (-iwt) 

with 

Im (w) = 0, 

sin (2~ At) = 20, At/[1 + (wlc Llt)2] 

<l for any positive value of wk At. 

But for runs with AX = A,, a second method is needed for stabilizing the code 
during the trapping phase. In calculating the electrostatic potential from Poisson’s 
equation, we have truncated the number density of the beam particles in Fourier 
space for I k 1 2 $ km,, (instead of / k 1 3 kmax); the effect of this operation-in the 
following we call it “beam truncation”-is similar to an increase of the size of the 
beam particles with fixed cell size AX for the fluid code. In order to have a fair com- 
parison, we also produced several runs with code (b) by varying the total particle 
number, the time step, cell size, and also by splitting each of the beam particles into 
10 particles of the weight l/l0 with respect to charge and mass. This operation, 
called “beam splitting” in the following, is equivalent to reducing the number of the 
background particles whose weight increases correspondingly (Kainer et al. [ 131). The 
relevant parameters for several runs are listed in Table II; runs l(a) and I(b) have 
been shown previously. iVB is the number of actually calculated beam particles, N the 
total number of actually calculated particles in case (b). The CPU time as measured 
on an IBM 370-168 computer fluctuates by about 10% according to the actual time 
sharing in connection with other users. It has been extrapolated to 2000 time steps in 
each case, though most of the particle runs (b) needed only 200 steps. Runs 4(a), 4(b) 
have been designed with equal time step, space grid, and number of beam particles, 
and should, therefore, be compared with respect to computer time and accuracy. 
Instead of showing all figures again we can limit ourselves to the time evolution of the 
most unstable mode, which is a rather sensitive tool for illustrating the effect of 
parameter changes. Figure 7a shows the results of the hybrid code. Run 2(a) could 
not be continued due to numerical instability; therefore, runs 3(a) and 4(a) used the 
semi-implicit scheme according to Eq. (16). While a change in dx still gives significant 
effects, we observe readily that neither a change in dt nor the beam splitting of run 4(a) 
gives remarkable modifications of the standard run l(a). Figure 7b of the particle code 
shows that a decrease of dx as well as the other changes lead to a more pronounced 
spread of the data. The earlier rise time of the mode for runs 2(b)-5(b) is due to the 
higher noise level, which is mainly determined by the background particles. In view 
of this material, we can say that the hybrid code is, for similar parameters, faster and 
more accurate than the particle code; but its stability remains a problem for runs 
with high spatial resolution or with long evolution times. 
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b 

FIG. 7. Time evolution of the wave energy of the most unstable mode for several runs as listed 

in Table II. m: coincidence of q and o; l : coincidence of q and O. 

8. SUMMARY AND DISCUSSION 

We have calculated the relaxation of a relativistic electron beam in an electron 
plasma with fixed ions in one space dimension, using two different numerical schemes. 
Code (a) integrated the fluid equations for the background electrons simultaneously 
with the beam particle equations and Poisson’s equation, while code (b) was a pure 
simulation code according to the particle-in-cell technique. All features of the relaxa- 
tion process, such as linear growth, particle trapping, generation of high-energy 
particles, and oscillations of beam and background energies, are better seen in code (a), 
due to the fact that the initial noise level could be chosen freely in accordance with 
the noise of a real plasma, while the noise in code (b) results from the restricted 
number of background electrons and is, therefore, notoriously high. One of the best 
agreements between the results of (a) and (b) in the nonlinear phase was the first 
maximum of, the field energy, Eq. (13). Thode and Sudan [7] give the following 
formula for this quantity: 

w,, = @(I + s)-j/2, 
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where S is the initial beam strength parameter as defined in Eq. (8). In our runs we 
have to put S = 0.4 and obtain 

WT, = 0.087, 

a value which is almost 20% too high. But this difference reflects only the inaccuracy 
of the formula for W,, . In a run similar to ours with yti = 2; nb,,/neO = 0.05; L/h, = 
710, the same authors obtained a saturation energy which is 4% lower than ours. The 
difference of the saturation times t, according to Eq. (14) can be explained by the 
different initial noise levels for (a) and (b). Extrapolating the exponential growth of 
W(t)from t = 0 to t = t, , we obtain the following estimate: 

exp ht,) = W(t,J/ W(O). 

Using the growth rate y,, of the most unstable mode according to Table I and the 
values for the initial noises as given in Section 4, we obtain for the difference d t, of t,y 
between (a) and (b) 

which is in good agreement with the observed value 30 because the true values of 
W(t,) are nearly equal and cancel each other. Thus, it seems that the fluid code is 
optimally adapted for calculations in two and three space dimensions for cold and 
warm beams since the storage requirements are considerably lower than for the PIC 
code. But we also have to mention two disadvantages which are implied by the high 
accuracy of the present code (a): first, it required a time step which was only one- 
tenth of the step in (b), and second, the generation of higher harmonics of the electric 
field, due to the bouncing motion of the trapped beam particles, is dangerous for the 
numerical stability of code (a). We have not yet found a sufficiently stable and dissi- 
pationless scheme which would also allow the calculation of the parametric phase 
where the stabilized beam modes drive the ion fluctuations unstable. Finally, we want 
to discuss our results with respect to further simplifications of the fluid description. 
O’Neil et al. [14] and Matsiborko et al. [15] reduced the fluid description of the 
background to the equation for the most unstable mode interacting with the beam 
particles; later on this single wave model was extended by Schamel et al. [16] to study 
the parametric phase. A common feature of these approaches is the appearance of an 
invariant of motion, the generalized plasmon number, which restricts the redistribu- 
tion of beam energy. In the absence of a beam, this invariance follows from a time 
scale argument even if many waves (Langmuir and ion sound) are present, as was 
shown by Elsasser and Schamel [17]. In the presence of a cold beam, the same argu- 
ment leads to a new invariant, provided that the spectrum of the high-frequency 
waves is sufficiently narrow; one finds the following generalized plasmon number 
(Maasjost [I 81): 

PN= Np f hdkX~), (17) 
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where Np is the ordinary plasmon number and (p) the mean momentum of the beam 
particles. We observed the field energy W, of the mode k, at saturation time t, and we 
found 

W, = 80.5% of W for (a), 

= 88.0% of W for (b), 

a result which seems to be in favor of the single-wave model. But we also observed the 
time evolution of PN in code (a) as shown in Fig. 8: it is not at all constant. The 
sloshing motion of the trapped particles is in conflict with the assumption of se- 
parated time scales even if the spectrum is narrow. Therefore, the fluid description 
involving many modes seems to be the simplest physical model which gives the correct 
dynamics of the background plasma. 

:‘-----7 
10 :: J 

FIG. 8. Plasmon number PN (Eq. 17) as a function of time in units of ~KTJ~w~~. 

APPENDIX: FLOW DIAGRAM 

Initialization 

(a) Initial values (t = 0) for 

p, cp, Ehom, vhom, x,; v, (t = -h/2); 

(b) Beam density pb (t = 0); 

(c) Total electric field E (t = 0); 

(d) New particle coordinates 

x, (t = At), u, (t = h/2); v, (t = 0); 
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(e) Initial mean beam current -(e/~)(p&~~~ (t = 0); 

(f) Second starting values (1 = -At) for 

Pt F; Ehom (t = -42); then put t = 0. 

Main Loop 

(a) New background quantities: 

p(f f 4, ~(1 -1 At), E h”m (1 t $1; Ehom(t + At), Gm(f + df); 

(b) New beam density Pb (t + dt); 

(c) New electric field E (t + dt); 

(d) New particle coordinates 

x, (t + 2dt), u, (t + I At>, vu (t + At) 

(e) New mean beam current -(e/m)(pbvb)hom (t + dr); 

(f) r-t+dr. 
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